首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   5篇
测绘学   1篇
大气科学   5篇
地球物理   59篇
地质学   67篇
海洋学   37篇
天文学   16篇
综合类   1篇
自然地理   37篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   11篇
  2006年   8篇
  2005年   9篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有223条查询结果,搜索用时 421 毫秒
31.
Subterranean microorganisms and radioactive waste disposal in Sweden   总被引:2,自引:0,他引:2  
In 1987, microbiology became a part of the Swedish scientific program for the safe disposal of high level nuclear waste (HLW). The goal of the microbiology program is to understand how subterranean microorganisms will interact with the performance of a future HLW repository. The Swedish research program on subterranean microbiology has mainly been performed at two sites in granitic rock aquifers at depths ranging from 70 m down to 1240 m, the Stripa research mine in the middle of Sweden and the Äspö Hard Rock Laboratory (HRL) situated on the south eastern coast of Sweden. Some work has also been performed in cooperation with other national or international research groups in Sweden, Canada and at the natural analogue sites Oklo in Gabon and Maqarin in Jordan. The following conclusions are drawn. There is a very high probability of the existence of a deep subterranean biosphere in granitic rock. The documented presence of a deep biosphere implies that relevant microbial reactions should be included in the performance assessment for a HLW repository. A HLW repository will be situated in a subterranean biosphere that is independent of solar energy and photosynthetically produced organic carbon. The ultimate limitation for an active microbial life will be the availability of hydrogen as energy source over time, and hydrogen has indeed been found in most deep groundwaters. Sulphide producing microorganisms are active in environments typical for a Swedish HLW repository, and the potential for microbial corrosion of the copper canisters must be considered. The bentonite buffer around the copper canisters will be a hostile environment for most microbes due to the combination of radiation, heat and low water availability. Discrete microbial species can cope with each of these constraints, and it is theoretically possible that sulphide producing microbes may be active inside a buffer, although the experiments conducted thus far have shown the opposite. Microorganisms have the capability to enzymatically recombine radiolysis oxidants formed by radiation of water. It has earlier been concluded that the migration of radionuclides due to sorption on microorganisms can be neglected. The influence of microbially produced complexing agents remains to be studied at realistic conditions in deep groundwater. Microorganisms have been found in natural alkaline groundwaters, but it could not be conclusively demonstrated that they were in situ viable and growing, rather than just transported there from neutral groundwater. A possible hypothesis based on the obtained results from investigations of natural alkaline groundwaters is that fresh concrete may be a bit too extreme for active life even for the most adaptable microbe – but this remains to be demonstrated.  相似文献   
32.
U/Pb zircon ages are reported for four ophiolites and three crosscutting arc-related plutons from the Norwegian Caledonides. Plagiogranite differentiated from gabbro of the Karmøy ophiolite is dated at 493+7/-4 Ma whereas arc-related trondhjemite cutting this ophiolite crystallized at 485+/–2 Ma. A crosscutting clinopyroxene-phyric gabbro intrusion is dated at 470+9/–5 Ma by near concordant magmatic titanite (sphene) and discordant U-rich (2903–6677 ppm) zircon. Lower intercepts of 247+/–68 and 191+/–70 Ma defined by the plagiogranite and clinopyroxene-phyric gabbro best-fit lines may reflect a real low-T alteration/rift-related event.A plagiogranite differentiate of the Gullfjellet ophiolite complex is dated at 489+/–3 Ma and a crosscutting arc-related tonalite is 482+6/–4 Ma. Both of these ages overlap with those of the correlative rocks at Karmøy suggesting that they are parts of one ophiolitic terrane with a common history.Trondhjemite associated with the Leka ophiolite is dated at 497+/–2 Ma, indicating that supra-subduction zone magmatism there may be coeval with spreading which formed the Karmøy axis sequence.The U/Pb zircon ages of Norwegian ophiolites reported here, combined with ages of other Appalachian-Caledonian ophiolite complexes in Britain and Canada, indicate a narrow age range for the generation of at least two marginal basins in the Tremadoc-Arenig. Two spreading episodes documented at Karmøy are separated in time by intrusion of arc-related trondhjemite magmas at 485+/–2 Ma and may correlate with two separate spreading events documented in other ophiolites.The Solund/Stavfjorden ophiolite, at 443+/–3 Ma, is the only late Ordovician ophiolite yet documented in the entire Appalachian-Caledonian Orogen and it probably represents a small, short-lived marginal basin late in the history of the Iapetus Ocean. It is correlative with Caradocian ensialic marginal basin magmatism in Wales and the Trondheim region, and with tholeiitic gabbro-diorite plutons that intruded Newfoundland ophiolites in a tensional regime after emplacement of the ophiolites over the continental margin.  相似文献   
33.
The granitic and charnockitic intrusions in the Precambrian migmatites around Farsund in southern Norway have previously been shown to be successively intruded as well as being geochemically different. Rb- and Sr-isotope data support the conclusion that they are intruded with a separate time interval and that the Farsund charnockite is younger (852±41 m.y.) than the Lyngdal hornblende granite (932±38 m.y.). Furthermore, the different initial ratios (0.7128 and 0.7054, respectively) disprove a comagmatic origin unless large-scale contamination has occurred.  相似文献   
34.
The polyphasal magmatic evolution of the Caledonian Karmøy Ophiolite Complex includes: (1) formation of an axis sequence from island-arc tholeiitic (IAT) and more MORB-like magmas (493+7/-4 Ma); (2) intrusion of magmas of boninitic affinity (485±2 Ma); (3) intrusion of MORB- and IAT-like magmas; (4) intrusion and extrusion of calc-alkaline magmas (470+9/-5 Ma); (5) intrusion and extrusion of basalts with alkaline trace-element affinity. Repeated intrusion of MORB and IAT-like magmas may be explained by intermittent magmatism involving magma-chamber solidification and remelting of a source characterized by initial Nd of approximately +6.5. The boninitic rocks may have formed from two LREE-depleted sources: the primary source of the axis-sequence magmas and the residual source left after extraction of these magmas. These sources have been enriched in LREE, Th and Zr from subducted material exhibiting a continental Nd-isotope signature with initial Nd less than-8. Covariation between Nd and Th, Zr, Nd, Y and Yb may be explained by metasomatic enrichment of a LREE-depleted mantle source by a LREE-enriched subduction component, followed by partial melting during which the degree of melting of the metasomatized mantle source increased linearly with the amount of subduction component added to the mantle source. The calc-alkaline magmas may have formed by remelting of a highly depleted source, which became enriched in some trace elements derived from the source of the subsequent alkaline magmatism. The geology and geochemistry of the Karmøy Ophiolite Complex suggest growth of an island-arc upon newly-formed oceanic crust, followed by arc-splitting and the development of a new basin.  相似文献   
35.
36.
Ophiolites within the Norwegian Caledonides were generated during at least two distinct periods, i.e. Tremadocian-Arenigian and Ashgillian. The older generation show a long-lived magmatic development (ca 500-470 Ma) with rocks that range from MORB, IAT, boninites, calc-alkaline to alkaline basalt in geochemical affinity. This development is compatible with generation in a subduction-influenced environment, and a plausible modern equivalent may be the ensimatic arc-basin evolution in the western Pacific.The metabasalts of the younger (Ashgill, 443±3 Ma) ophiolite occurrence are characterized by a dominance of N- to E-MORB compositions with subduction zone influence. The volvanics of the complex are intercalated with, and overlain by, continentally-derived sediments. Calc-alkaline as well as alkaline lavas and volcanic-lastics apparantly define late magmatic products. Associated with the youngest ophiolite is a sedimentary melange with olistoliths of mature island arc-derived volcanics, as well as clasts with MORB-IAT affinity, chert and sandstone, the latter probably derived from an accretionary prism. An Andaman Sea model appears most applicable to the youngest ophiolite/associated sediments assemblage.Contemporaneously with the renewed, Ashgillian spreading episode, widespread deposition of clastic sequences of Ashgillian age took place unconformably on the Lower Ordovician ophiolite complexes in fault controlled basins.  相似文献   
37.
38.
We report U–Pb dates and Lu–Hf isotope data, obtained by LAM-ICPMS, for zircons from metamorphic rocks of the Setesdalen valley, situated in the Telemark block south of the classic Telemark region of southern Norway. The samples include infracrustal rocks from the metamorphic basement, metaigneous rocks and metasediments from the Byglandsfjorden supracrustal cover sequence, and metaigneous rocks which intruded the whole succession. The main crustal evolution took place from 1,550–1,020 Ma, beginning with the emplacement of juvenile tonalitic melts; the contribution of older crustal material increased with time. Around 1,320 Ma, further addition of juvenile material occurred, involving both mafic and felsic melts, metamorphism and deformation. Acid magmas with high FeO*/MgO were intruded at 1,215 Ma, coinciding with underplating elsewhere in South Norway. The period starting at 1,215 Ma is represented by supracrustal rocks, principally metarhyolites with minor mafic material and immature sediments of the Byglandsfjorden Group. The crust generation processes ended with the intrusion of diorites and granodiorites at 1,030 Ma, late in the Sveconorwegian orogeny. Regional processes of metamorphism and deformation (around 1,290 and 1,000 Ma) can be related to the assembly of Rodinia. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
39.
Newly acquired, sequentially spaced, high-resolution near-infrared spectra across the central section of crater Copernicus’ interior have been analyzed using a range of complementary techniques and indexes.We have developed a new interpretative method based on a multiple stage normalization process that appears to both confirm and expand on previous mineralogical estimations and mapping. In broad terms, the interpreted distribution of the principle mafic species suggests an overall composition of surface materials dominated by calcium-poor pyroxenes and minor olivine but with notable exceptions: the southern rim displays strong ca-rich pyroxene absorption features and five other locations, the uppermost northern crater wall, opposite rim sections facing the crater floor, and the central peak Pk1 and at the foot of Pk3, show instead strong olivine signatures.We also propose impact glass an alternative interpretation to the source of the weak but widespread olivine-like spectral signature found in low-reflectance samples, since it probably represents a major regolith constituent and component in large craters such as Copernicus.The high quality and performance of the SIR-2 data allows for the detection of diagnostic key mineral species even when investigating spectral samples with very subdued absorption features, confirming the intrinsic high-quality value of the returned data.  相似文献   
40.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号